Incentive Design and Utility Learning via Energy Disaggregation

نویسندگان

  • Lillian J. Ratliff
  • Roy Dong
  • Henrik Ohlsson
  • S. Shankar Sastry
چکیده

The utility company has many motivations for modifying energy consumption patterns of consumers such as revenue decoupling and demand response programs. We model the utility company–consumer interaction as a reverse Stackelberg game and present an iterative algorithm to design incentives for consumers while estimating their utility functions. Incentives are designed using the aggregated as well as the disaggregated (device level) consumption data. We simulate the iterative control (incentive design) and estimation (utility learning and disaggregation) process for examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Study on Energy Disaggregation via Deep Learning

Energy disaggregation is the task of estimating power consumption of each individual appliance from the whole-house electric signals. In this paper, we study this task based on deep learning methods which have achieved a lot of success in various domains recently. We introduce the feature extraction method that uses multiple parallel convolutional layers of varying filter sizes and present an L...

متن کامل

Multi Objective Scheduling of Utility-scale Energy Storages and Demand Response Programs Portfolio for Grid Integration of Wind Power

Increasing the penetration of variable wind generation in power systems has created some new challenges in the power system operation. In such a situation, the inclusion of flexible resources which have the potential of facilitating wind power integration is necessary. Demand response (DR) programs and emerging utility-scale energy storages (ESs) are known as two powerful flexible tools that ca...

متن کامل

Energy Disaggregation via Learning Powerlets and Sparse Coding

In this paper, we consider the problem of energy disaggregation, i.e., decomposing a whole home electricity signal into its component appliances. We propose a new supervised algorithm, which in the learning stage, automatically extracts signature consumption patterns of each device by modeling the device as a mixture of dynamical systems. In order to extract signature consumption patterns of a ...

متن کامل

REDD: A Public Data Set for Energy Disaggregation Research

Energy and sustainability issues raise a large number of problems that can be tackled using approaches from data mining and machine learning, but traction of such problems has been slow due to the lack of publicly available data. In this paper we present the Reference Energy Disaggregation Data Set (REDD), a freely available data set containing detailed power usage information from several home...

متن کامل

The Neural Energy Decoder: Energy Disaggregation by Combining Binary Subcomponents

In this paper a novel approach for energy disaggregation is introduced that identifies additive sub-components of the power signal in an unsupervised way from high-frequency measurements of current. In a subsequent step, these sub-components are combined to create appliance power traces. Once the subcomponents that constitute an appliance are identified, energy disaggregation can be viewed as n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013